Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images
نویسندگان
چکیده مقاله:
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, support vector regression (SVR) and multi-layer perceptron artificial neural network (ANN-MLP) method. The parameters of the two models are optimized by the Genetic optimization algorithm. Estimation of volumetric soil moisture content with the two top models was performed using two types of radar image (Sentinel 1) and optics image (Sentinel 2), in which optimized optics image bands were identified by the Genetic optimization algorithm. After estimating the volumetric soil moisture map, four outputs of the two methods are compared. The best estimate of the volumetric soil moisture content has been achieved by the support vector regression (SVR) method with the Sentinel 1 image. The worst estimate of the volumetric soil moisture content has been achieved by the multi-layer perceptron artificial neural network (ANN-MLP) method with the Sentinel 2 image. The accuracy of this study was calculated by the square of correlation coefficient of the measured volumetric soil moisture content and the estimated volumetric soil moisture content, which the best and worst correlation coefficients, respectively, 0.659 for Sentinel1 image using support vector regression method and 0.409 for Sentinel2 image using multilayer perceptron neural network method have been calculated. The root mean square error (RMSE) is also used to calculate the error of the methods. The lowest and highest errors were calculated by 0.291 for Sentinel1 image with support vector regression and 0.4612 for Sentinel2 image with Multilayer Perceptron Artificial Neural Network.
منابع مشابه
Estimation of Soil Moisture Index Using Multi-Temporal Sentinel-1 Images over Poyang Lake Ungauged Zone
The C-band radar instruments onboard the two-satellite GMES Sentinel-1 constellation provide global measurements with short revisit time (about six days) and medium spatial resolution (5 × 20 m), which are appropriate for watershed scale hydrological applications. This paper aims to explore the potential of Sentinel-1 for estimating surface soil moisture using a multi-temporal approach. To this...
متن کاملOil spill detection using in Sentinel-1 satellite images based on Deep learning concepts
Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...
متن کاملSoil moisture estimation in a semiarid watershed using 3 RADARSAT - 1 satellite imagery and genetic programming
6 [1] Soil moisture is a critical element in the hydrological cycle especially in a semiarid 7 or arid region. Point measurement to comprehend the soil moisture distribution 8 contiguously in a vast watershed is difficult because the soil moisture patterns might 9 greatly vary temporally and spatially. Space-borne radar imaging satellites have been 10 popular for they may exhibit all-weather ob...
متن کاملSoil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach
A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their...
متن کاملA Sparse Representation Method to Detect Saffron Agricultural Lands Using Sentinel-II Satellite Images Time
Nowadays, agricultural management via remote sensing technology has gained a special position among managers and the people who are in charge of this industry. Saffron (Red Gold) is one of specific Iran’s agricultural products with a high economic valance which is used in different fields of food and medical industries. Considering the cultivation conditions of the saffron, there has not a pers...
متن کاملSoil Moisture Estimation Using Remote Sensing
Knowledge of soil moisture content in the root zone is important throughout a wide range of environmental applications, yet adequate monitoring or modelling of this parameter, particularly at larger spatial scales, is difficult due to its high spatial and temporal variability. To overcome the land surface model limits on soil moisture estimation accuracy, point measurement spatial coverage limi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 4
صفحات 215- 232
تاریخ انتشار 2020-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023